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Abstract. Experiments in high-energy astroparticle physics produce
large amounts of data as continuous high-volume streams. Gaining in-
sights from the observed data poses a number of challenges to data anal-
ysis at various steps in the analysis chain of the experiments. Machine
learning methods have already cleaved their way selectively at some par-
ticular stages of the overall data mangling process.

In this paper we investigate the deployment of machine learning meth-
ods at various stages of the data analysis chain in a gamma-ray astron-
omy experiment. Aiming at online and real-time performance, we build
up on prominent software libraries and discuss the complete cycle of
data processing from raw-data capturing to high-level classification us-
ing a data-flow based rapid-prototyping environment. In the context of
a gamma-ray experiment, we review user requirements in this interdis-
ciplinary setting and demonstrate the applicability of our approach in a
real-world setting to provide results from high-volume data streams in
real-time performance.
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1 Introduction

Modern astronomy studies celestial objects (stars, nebulae or active galactic
nuclei) partly by observing high-energy beams emitted by these sources. By
a spectral analysis of their emissions, these objects can be characterized and
further insight can be derived. Plotting the energy emissions over time leads to a
light curve, which may show pulsatile behavior and other properties that allow for
a classification of the observed object. An example is the distinction of different
supernova types based on the form of their light curves [12]. The creation of
a spectrum of the radiated energy levels is therefore a key skill. A collection
of different monitoring techniques such as satellites [22], telescopes [21,2,18] or



water tanks [4,1] is deployed to observe different ranges of the electromagnetic
radiation produced by the sources. A central problem in all these experiments
is the distinction of the crucial gamma events from the background noise that is
produced by hadronic rays and is inevitably recorded. This task is widely known
as the gamma-hadron separation problem and is an essential step in the analysis
chain. The challenge in the separation step is the high imbalance between signal
(gamma rays) and background noise, ranging from 1:1000 up to 1:10000 and
worse, which implies large amounts of data that need to be recorded for a well-
founded analysis of a source. The high sampling rate and the growing resolution
of telescope cameras further require careful consideration of scalability aspects
when building a data analysis chain for scientific experiments.

In this work, we investigate the online use of classification methods for data
filtering and spectrum creation in gamma-ray astronomy. We review the data
flow of prominent experiments like MAGIC or FACT, and inspect the preprocess-
ing chain from data acquisition to the extraction of a spectrum from a machine
learning point of view. With respect to the scalability requirements we discuss
the use of distributed model application as part of the analysis chain. As recorded
data is unlabeled, only simulated data can be used to train filters. These can
easily be trained in a batch setting, but an application of any model is required
in an online fashion. This, in turn, poses constraints on the features that can be
used. Further, there exists an interdisciplinary gap between the domain experts
(physicists) and the field of computer science that spoils a fruitful cooperation
in both areas. Our contributions are as follows:

(1) We outline the data flow from observation to analysis in the real-world setting
of the FACT Cherenkov Telescope.

(2) We discuss multiple spots for the use of machine learning models in the
analysis and the constraints faced.

(3) Based on the streams framework [9], we provide a library of processing func-
tions (fact-tools) to easily model the overall data processing and analysis
chain in a rapid prototyping manner.

(4) We demonstrate the applicability of our proposed framework and the ma-
chine learning methods using real-world data of the FACT telescope.

The rest of this paper is structured as follows: In Section 2 we provide a
short overview over the field of Cherenkov astronomy, subject to our study, and
review the flow of data from data acquisition to the extraction of the desired
information. Along this data flow, we highlight the use of machine learning mod-
els, including related works on that matter, and close with a discussion on the
requirements from the view of domain experts as well as the interdisciplinary
gap that we faced between the world of end-users (physics) and data engineers
(computer science). In Section 3 we introduce the fact-tools – our high-level
framework to model the data flow, which integrates state of the art tools such
as WEKA [16] and MOA [7] to incorporate machine learning for various tasks.
We demonstrate the use of our framework and evaluate different machine learn-
ing methods in the real-world setting of the FACT telescope in Section 4. We
summarize our lessons learnt and future ideas in Section 5.



2 Data Analysis in Cherenkov Astronomy

The examination of sources in astronomy relies on the observation of energy
emitted by these sources. Unfortunately, these energy beams cannot be observed
directly, but only by an indirect measuring of the effect they are triggering in
some detector medium. In the case of Cherenkov telescopes, the atmosphere is
used as detector medium: particles interact with elements in the atmosphere and
induce cascading air showers as they pass the atmosphere. These showers emit
so-called Cherenkov light, which can be measured by telescopes like MAGIC
or FACT. Figure 1 shows an air shower triggered by some cosmic ray beam,
emitting Cherenkov light that can be captured by the telescope camera. The
cone of light produced by the shower is visible in the camera for a period of
about 150 nanoseconds. The camera of the telescope consists of an array of light-
sensitive pixels that allow for the recording of the light impulse induced by the
air shower. For a fine-grained capture of the light pulses, the camera pixels are
sampled at a very high rate (e.g. 2 GHz). Figure 1 shows the layout of the FACT
camera, which consists of 1440 pixels in hexagonal form. The high sampling speed
requires high-performance memory for buffering the sampled data. The cameras
usually continuously sample all the pixels into a ring-buffer and a hardware
trigger initiates a write-out to disk storage if some pixels exceed a specified
threshold (i.e. indication of shower light hitting the telescope). Upon a trigger
activation, the sampled data written to disk captures a series of camera samples
which amount for a time period of about 150 to 300 nanoseconds, called the
region of interest (ROI). This fixed-length series of consecutive camera samples
produced upon a trigger is called an event and corresponds to the light cone
induced by the airshower.
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Fig. 1. An air shower produced by a particle beam hitting the atmosphere. The shower
emits a cone of blue light (Cherenkov light) that will hit the telescope mirrors and is
recorded in the camera. The right-hand side shows a still image of the light cone in the
telescope camera (FACT telescope).



2.1 From Raw Data Acquisition to Spectral Analysis

The raw data produced by telescopes like MAGIC or FACT consists of the
sampled voltages of the camera pixels for a given time period (ROI). Using
these voltage levels, the following steps are required in the analysis, each of
which is individually performed for each event, naturally implying a stream-
lined processing:

(1) Calibration, Cleaning: Calibrate the data, determine the pixels that are part
of the light shower.

(2) Feature Extraction: Find features that best describe the data to solve the
following steps.

(3) Signal Separation: Assess whether the event is induced by a gamma-ray
(signal) or a hadronic shower (noise).

(4) Energy Estimation: Estimate the Energy of the primary gamma particle from
the calculated energy correlated features.

Based on the number of signals detected and the estimated energy spectrum,
properties of the observed astronomical source can be inferred. From a data
analysis point of view we can map this process to the high-level data flow out-
lined in Figure 2. Especially the separation of signal and noise and the energy
estimation are candidates for use of machine learning. The extraction of features
for subsequent use of machine learning in steps (3) and (4) is a crucial step and
requires back-to-back fine tuning with the learning methods. The dark arrows
show additional back-to-back dependencies between the different steps. These
dependencies induce a highly volatile optimization process in the development
of the overall analysis chain: any changes in the calibration of cleaning may
lead to slightly different feature values for the signal separation and the energy
estimation step.

Calibration,
Cleaning

Feature
Extraction
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Fig. 2. Data processing steps from raw data acquisition to energy estimation.

The calibration and cleaning methods are highly domain specific and require
careful consideration by domain experts. Given, that the electronics of such
telescopes are customized prototypes, each device requires different setups that
may vary with changes in the environment (temperature). These early steps in
the data processing chain usually relate to hardware specifics and are fine-tuned
in a manual way. In case of the FACT telescope, base voltages and gains for each
pixels need to be adjusted with respect to calibration data recordings.



2.2 Feature Extraction for Machine Learning

Given domain knowledge, the gamma and hadronic particles behave different
when hitting the atmosphere. As gamma particles are uncharged, they have
strict directional energy and air showers created by gammas are expected to be
directed straight from the source as well. Hadronic particles in contrast may be
deviated by electromagnetic fields and thus will drop into the atmosphere from
any direction. In addition, the atmospheric interaction of hadronic showers tends
to degrade into much wilder cascades. A basic assumption is, that the structural
differences in these showers are reflected in the image that the Cherenkov light
emitted by these showers induces in the telescope camera. These properties are
described by the so-called Hillas parameters, which form a set of geometric fea-
tures that are widely used in gamma ray astronomy [19,13]. The features intro-
duced by Hillas describe the orientation and size of an ellipse fitted to the area of
a shower image. The ellipse is fitted to the pixels that have survived the previous
image cleaning step, in which pixels not part of the shower are removed. The
geometric orientation of the ellipse is correlated with the angular field of the
telescope. Figure 3 shows a shower image after removal of non-shower pixel and
the Hillas features derived. It is obvious, that the image cleaning step, in which
the shower pixels are identified, has a direct impact on the ellipse, that will be
fitted. Apart from the size (width, length) the orientation of the ellipse (alpha)
and its offset from the origin is extracted.

In addition to these basic geometric features, other properties of shower im-
ages have been derived, such as the fluctual distribution from shower center
[11] (for the Milagrito experiment) or the surface brightness [5]. In [14] Faleiro
et al proposed the investigation of spectral statistics as discriminating features,
whereas [23] evaluated an encoding of shower images using multi-fractal wavelets.

Fig. 3. Geometric Hillas features to support signal-noise separation. Figure shows an
event in the FACT camera after image cleaning.



2.3 Signal Separation and Energy Estimation: Machine Learning

The detection of gamma induced events has been investigated as a binary clas-
sification task, widely referred to as the gamma-hadron separation. The features
described in the previous section have all been proposed and tested in combina-
tion with a classification algorithm to achieve the best filtering of signal events
from hadronic background. As the showers are distinct events, this boils down
to finding some model

M : S → {−1,+1}

that maps a recorded shower S ∈ S represented by a set of features to one of
the two possible classes. The challenge in this classification task is the highly
imbalanced class distributions as a very small fraction of gamma rays needs to
be separated from the large amount if showers induced by hadronic particles.
The expected ratio is at the level of 1:1000 or worse, requiring a huge amount
of recorded data in order to find a meaningful collection for training a classifier.

The classifiers tested with the aforementioned features range from manual
threshold cuts using discriminative features [8], neural networks (combined with
fractal features [23]) to support vector machines or decision trees. [8] provides a
study comparing various classifiers on a fixed set of features (Hillas parameters).
Random forests [10] generally provide a robust performance and have become a
widely accepted method for the gamma-hadron separation in that domain.

Energy Estimation

Another field where machine learning contributes is the estimation of energy.
The recorded data only reflects the image of light emitted by the air shower that
was produced by the cosmic ray. Of interest to the physicists is the energy of
the particles that induced the shower. The reconstruction of the energy of the
primary particle can be seen as a regression task, finding a model

E : S → R

which predicts the energy based on features obtained from the shower image.
For the MAGIC telescope, Berger et al. investigated the energy reconstruction
with random forests, claiming that a small set of features is suitable for a robust
energy estimation, with the size parameter being the most important one [6].

Labeled Data by Probabilistic Simulation

A big problem when applying machine learning in astrophysics is, that particles
arriving from outer space are inherently unlabeled. Using that data for super-
vised learning requires an additional step to obtain data for training a classifier:
The solution to the labeling problem is found in data simulations using the
Monte Carlo method. There exists a profound knowledge of the particle interac-
tion in the atmosphere: Given the energy and direction of some parent particle
(gamma, proton, etc.) its interaction can be described by a probabilistic model



which gives a probability for particle collisions, possibly resulting in secondary
particles. Each of these secondary elements may further interact with other par-
ticles of the atmosphere. This results in a cascade of levels of interactions that
form the air shower. Figure 4 shows the transition of a particle and its interaction
in the atmosphere. The showers previously shown in Figure 1 are examples of
such simulated cascades. Unfortunately, the simulation of non-gamma showers
is far more computationally extensive. Charged particles do interact with the
atmosphere much more intense, resulting in more complex cascades. The simu-
lation of atmospheric showers is performed in ray-tracing like software systems,
most popular being the CORSIKA simulator [17]. The output is a simulated air
shower, which needs to be run through a simulation of the telescope and camera
device to produce the same raw input data as if the shower has been recorded
using the real telescope.

µ
e −

e +
e −

γ

e +
e −

X

e −

e +
e −

e −

Fig. 4. Synthetic data by simulation in a stochastic process. Collision probabilities and
generation of secondary particles are based on domain knowledge.

2.4 The Interdisciplinary Gap in Process Development

Looking at the big picture of the data analysis in a telescope like FACT, there is
a steady development of each of the steps in progress: new features are tested for
improved separation, different classifiers are investigated. The complete process
from data recording to final energy estimation is continuously improved under
the aspect of physics, typically resulting in diverse proprietary software solutions.
The machine learning and computer science community, on the other hand, has
produced a valuable collection of open-source software libraries for learning (e.g.
MOA [7], WEKA [16] or RapidMiner [20]) and stream-lined process execution
(e.g. Apache Storm, Samza). Unfortunately, the integration of these tools often
requires specifically trained developers to adapt them to an application domain,
which hinders the rapid prototyping evolution of the analytical domain software.

We generally refer to this problem as the interdisciplinary gap – the difficulty
to apply sophisticated tools in a specific cross-disciplinary application domain.
Over the collaborative research center project C3, we focused on bridging this
gap by building a process design framework that provides the high-level means to
define analysis chains from an end-user point of view, while keeping the power to
integrate state-of-the-art software platforms such as the ones mentioned above.



3 Online Data Analysis for the FACT Telescope

After we provided a big picture of the analysis chain for the FACT telescope,
we now present the FACT-Tools, our high-level approach to implementing an
analysis chain from data acquisition to deriving the final results. The implemen-
tation focuses on an online processing of the recorded events, geared towards
matching the data rate of the telescope. We build upon the streams framework,
developed at the TU Dortmund University, which features a declarative XML
specification of generic data flows. By providing a small set of application spe-
cific components that match the streams programming API, the domain experts
gain full control of the overall process layout while retaining the possibility to
integrate state-of-the-art machine learnign libraries and a possible mapping of
the resulting data flows to large scale execution engines, like Apache Storm.

3.1 The streams Data Flow Framework

Modern data processing chains – like the one required for the FACT telescope
– can generally be presented by their data flow. In such data flow graphs, a
source emitting a sequence of records is linked to a graph of nodes, each of
which provides the processing of input and the delivery of some output. Such
data flow graphs are inherent to all modern data processing engines, especially
in the field of data stream processing.

With the streams framework we aim at finding an appropriate level of abstrac-
tion that allows for the design of data flows independent of a specific execution
engine. The focus of streams is a light-weight middle-layer API in combination
with a descriptive XML-based specification language, that can directly be exe-
cuted with the streams runtime or be mapped to topologies of the Apache Storm
engine. The predominant focus in the development of streams was a simplis-
tic light-weight API and process definition that is easily applicable by domain
experts and adaptable to a variety of different use cases.

Each of the connected processes in streams consists of a pipeline of user-
functions, which are applied to the processed items in order. Figure 6 shows a
brick-like visualization of a process as pipeline of functions. The source nodes
provides a sequence of data items that is individually processed by the process
pipeline of user-functions. These user-functions are typically implemented in

<application>

</application>

<stream/> <process/>

<queue/>

<process/>

<process/>

Fig. 5. The outline of an application in streams – a graph of connected processes.



single Java classes and are directly referenced by their implementation name
from inside the XML element of the corresponding process. The figure shows
functions for the calibration, image cleaning and extraction of Hillas parameters.
With these features available, a classifier model can be applied.

trainsource

Telescope Data

Data Calibration

Image Cleaning

Hillas Parameters

Apply Classifier

Feature Extraction

Fig. 6. A data stream source connected to a process that consists of four different user
functions for calibration and feature extraction.

To achive the maximum level of flexibility, the data items (or tuples) that are
passed from one user-function to the next, are wrapped in a simple hashmap (or
dictionary), that can be accessed and enriched by each user-function. The data
that can be stored in each of these can be of arbitrary serializable types, allowing
for the implementation of user-functions that work on simple data types as well
as frames/images (video processing) or telescope event data as we will discuss in
the next section. To further ease the modelling of data flows with a set of imple-
mented user-functions, the streams approach facilitates an automatic mapping
of XML attributes to classes following the JavaBean conventions. This removes
any intermediate layer between process modelling and function implementation.

<process input="telescope:data">

<fact.data.DrsCalibration calibrationFile="file:/data/calib.fits" />

<fact.image.ImageCleaning energyThreshold="2.45" />

<fact.image.features.HillasParameters />

<streams.weka.Apply modelUrl="http://sfb876.de/rforest.weka" />

</process>

Fig. 7. The XML corresponding to the pipeline of the previous figure.

3.2 FACT-Tools: Processing Telescope Data

The FACT-Tools is a collection of input implementations and user-functions that
is built around the processing of telescope data. By implementing the required
functionality in the context of the user-functions API of streams, this allows
physicists to easily create data flows by XML specifications and test their pro-
cesses in a reproducible manner. This rapid prototyping and library-style coding



led to a quickly evolving setting that covers the complete data analysis chain
from data acquisition to evaluation.

The primal data gathered by the telescope is encoded in the FITS file for-
mat. The Flexible Image Transport System (FITS) is a file format proposed by
NASA to store satelite images and other information in a compact, yet flexi-
ble way as it supports a variety of basic data types that can be stored. The
bulk of data, recorded by the telescope for each event, is provided as a large
array of values, sampled from the camera pixels. Along with those samples, ad-
ditional information on the event, such as the number of the recording run, the
time and high-resolution arrival times for each pixel. The FACT-Tools provides
a fact.io.FitsStream implementation that reads this data from any input
stream and emits a sequence of items (one per shower event). Table 1 shows an
excerpt of the elements provided for each item.

Name (key) Type Description

EventNum Integer The event number in the stream

TriggerNum Integer The trigger number in the stream

TriggerType Integer The trigger type that caused recording of the event

Errors Integer Indicates communication errors

UnixTimeUTC Integer Timestamp of the recorded event in millisecond accuracy

Data Double[432000] The raw data array (1440 · 300 = 432000 float values)

Table 1. The representation of a shower event as hashmap in the streams model.

User-Functions for Telescope Events

The core element of each event is found as key Data in Table 1. It holds the
values sampled from each pixel upon a trigger. As a region of interest of 300
slices is written to disk for each event, this amounts to 432000 values. Based
on calibration data, the sampled values need to be adjusted to match the spe-
cific voltage offsets and gains for each pixel, which may vary depending on the
temperature and other environmental factors. Based on the calibrated per-pixel
time series, a couple of additional user-functions can be applied, each of which
reflects the computation of features such as the identification of shower- and
non-shower pixels, the fitting of an ellipse to the supposed shower image and the
derivation of geometric Hillas parameters or other properties of the event.

Geared towards the rapid prototyping of this data-preprocessing flow, a wide
range of additional user-functions has been implemented by the domain experts,
which range from additional time-calibrations to data corrections such as the
removal of broken pixel data. Each of these preprocessing step is focused on
improving the data quality and finding of features that may further improve the
overall gamma-hadron separation task.



3.3 Integration of Machine Learning Libraries

As part of the abstract data flow design, we integrated the MOA and WEKA
machine learning libraries as modules into the streams framework. Though espe-
cially MOA is geared towards online learning, the setting of the telescope data
demands more for an online application of models: The data that is used for
training the models, is synthetically generated and available as a batch data set.
Typically, the size of that data is also comparably small, once the features for
training have been extracted (the majority of the data volume is embodied in
the raw data). A crucial aspect for the application of machine learning models,
is the fact that only features, which are extracted online are suitable for use in
such models. Any features that relate to an overall property of a data set, e.g.
a normalization with respect to the sum computed over a set of instances, will
not match the stream-lined setting that we aim for in the FACT data analysis.

The two user-functions streams.weka.Train and streams.weka.Apply have
been implemented, which can be used to incorporate the training and application
of WEKA models directly within a streams data flow. This ensures, that the same
preprocessing setup can be used to feed the training of the model as well as its
later application. The Train function collects a batch of user-specified instances
to build its training data set. This is crucial as some features such as nomi-
nal type features require additional meta-data to be equal during training and
model application. Upon building the classifier, the Train function outputs the
serialized model in addition to the meta-data information about the attributes.
In addition, its features parameter allows for an easy wild-card selection of
features that shall be used for building the classifier. Any keys prefixed with an
@ character (e.g. @id or @source) are not regarded regular features for training
the classifier. Figure 8 shows the XML setting of a process for training a random
forest classifier using WEKA within streams. Classifier options are automatically
mapped to XML attributes using Java’s reflection API. The approach directly
supports any of the provided WEKA classifiers. The corresponding Apply func-
tion has previously been shown in Figure 7. It requires a modelUrl parameter
that holds the location of the serialized model. The streams framework automat-
ically handles different URL types, such as file, http or classpath resources. This
eases the sharing of processes and their models as well as a distributed execution
of multiple instances of the analysis with a shared separation model.

<process input="simulator:data">

<!-- preprocessing left out due to out space limitations -->

<streams.weka.Train

features="*,!hillas:size"

classifier="weka.classifiers.tree.RandomForest"

numTrees="100"

output="/data/random-forest.weka" />

</process>

Fig. 8. Training a WEKA classifier specified in XML.



4 Experiments

We tested the use of WEKA within the overall processing chain of the FACT
telescope as modelled with the FACT-Tools. The data we used in the experiments
was generated by Monte Carlo simulations using the CORSIKA software. The
dataset contains 139333 shower events, of which 100000 events stem from gamma
and 39333 events from proton (hadronic) particles. The events are simulated in
raw data format and passed through the standard cleaning and feature extraction
chain using the FACT-Tools, resulting in 83 features suitable for separation. For
the experiments, we focused on the following aspects:

1. Predictive performance of the classifier for gamma-hadron separation,
2. Improvements of separation by re-organisation of the data flow,
3. Throughput performance of the overall processing chain.

An interesting note for the performance comparisons is the optimization crite-
rion used to assess the classification. Whereas the traditional machine learning
community often uses precision, recall or accuracy for grading classifier perfor-
mances, the physics field is more interested in a pure sample of gamma ray
induced events. A well-accepted measure in this area is the Q-factor defined as

Q =
εγ√
εp

with εγ =
Ndet
γ

Nγ
and εp =

Ndet
p

Np

where εγ and εp represent the gamma efficiency (number of gammas detected
divided by total number of gammas in dataset) and the proton or hadron effi-
ciency respectively. The Q-factor aims at assessing the purity of the resulting
gamma events. In addition we also provide the significance index [15].

4.1 Gamma-Hadron Separation with WEKA Classifiers

Using the basic Hillas parameters and an additional set of features build up on
these, we tested different classifiers: Random Forests, an SVM implementation
and a Bayesian filter. Table 2 shows the classification performance for these
approaches. Each classifier was evaluated with a 10-fold cross validation and
optimized parameters: The Random Forest was trained with 300 trees with 12
features and a maximum depth of 25. The SVM used an RBF kernel with kγ =
0.014 and C = 10. The training set in each fold was balanced.

Classifier Q Factor Significance Accuracy Precision

Random Forest 4.796 ± 0.178 65.55 ± 0.358 0.969 ± 0.0021 0.959 ± 0.0029

SVM 4.013 ± 0.916 60.227 ± 1.859 0.953 ± 0.010 0.936 ± 0.025

Naive Bayes 2.267 ± 0.0609 51.65 ± 0.503 0.841 ± 0.0048 0.864 ± 0.0062

Table 2. Performances for gamma/hadron separation with different classifiers.



For an improved purity, the classification is weighted with the confidence pro-
vided by the classifier. Those confidence cuts are applied by physicists to obtain
an even cleaner sample as is crucial for all subsequent analysis steps. All gamma
predicted elements with a confidence less than some threshold are regarded as
proton predictions. Though this increases the number of missed gamma events,
it eliminates false positives, which may tamper with subsequent steps such as
energy estimation. Figure 9 shows the impact of these confidence cuts.
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Fig. 9. Refined selection by confidence cuts, which improves the purity at the cost of
missed signals, reflected in a decreased recall, which diminishes the accuracy.

4.2 Signal Separation with Local Models

A parameter describing the “intensity” of the shower is size, which incorporates
the area of the ellipse and the voltage levels of the covered pixels. The size

parameter is known to highly correlate with the energy of the original particle [6]
and allows for a grouping of events based on their energies. We investigated the
separation performance of Random Forests, trained on disjoint datasets defined
on a partitioning using the log10(size) feature (Figure 10).
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Fig. 10. Distribution of gamma and hadronic events over size range (left) and perfor-
mance of local models per bin vs. global model (right).



We limited this experiment to bins of log10(size), which had at least 10.000
events for testing. The right plot shows the Q-Factor for models trained and
evaluated on separate bins (green) and the global model trained over data from
all bins (blue) without any confidence cuts applied. The figure provides the Q-
Factor averaged over a 10-fold cross validation, the light green area shows the
standard deviation. We only looked at the Q-Factor here, as it is the accepted
criterion in that community.

4.3 Throughput Performance of the FACT-Tools

The FACT telescope records at a rate of 60 events per second, where each event
amounts up to 3 MB of raw data, resulting in a rate of about 180 MB/s. Figure
11 shows the average processing time (milliseconds) of the user-functions for the
complete analysis in a log-scale. The first two blocks of functions reflect the bulk
of raw data processing. Ellipse fitting and other feature extractions which are
input to the classification step are shown in bright green. The process is able to
handle the full data rate of the telescope on a small scale Mac Mini.

The improved separation by the use of local models suggests a split of the
data stream. Though the size feature is only available at a later stage in the
process, it highly correlates with properties available directly after the data
calibration (2nd user function) has been applied. In combination with the local
models this allows for a massive parallelization by data stream grouping, when
deploying the process in distributed environments such as Apache Storm. The
generic abstraction provided by streams already allows for a direct mapping of
the XML process specification to a Storm topology.
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Fig. 11. Average processing times of the analysis chain functions (log scale).

5 Summary and Conclusion

In this work we reviewed the analysis chain of an Air-Cherenkov telescope and
provided an online implementation of that process by the high-level abstraction



framework streams. The resulting data flow covers the complete data processing
and feature extraction. It integrates previously trained WEKA models and is
able to handle the data rate of the FACT telescope in real-time. By focusing
on a declarative, easy-to-use abstraction, we lowered the barrier of end-users
designing their own analytical data flows, enabling direct use of state-of-the-
art machine learning libraries. The generic nature of the streams abstraction
and its embeddability allows for a direct integration into large scale distributed
streaming engines and sets the scene to cope with the load of upcoming, more
high-resolution telescopes.

Future work will further focus on improving the separation power and in-
vestigating models for energy estimation for FACT. As the scalability aspect
obviously touches the data preprocessing we are looking into a direct mapping
of user-functions defined using the streams API in Apache Storm and Apache
Hadoop, aiming at a full code re-use without modifications.

We are also confident that this use-case can be mapped to other scenarios as
we successfully tested it in steel-mill factories [24] and smart cities [3,25].
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